推進工法における注入材料の適用 (滑材・添加材・裏込め材に求められる性能)

機動建設工業㈱ 機動技研

はじめに

推進工法には様々な技術が要求され る。事前調査で、設計施工に関わる全 ての条件を洗い出し、掘進機や排土方 式等の選定が行われ、滑材・添加材・裏 込め材も選択される。その全ての機材の 性能がその推進工事の成否を決める。

その中で、推進工法における注入材 料は化学的な性能を発揮することが望 まれる故、設計者や施工者はそれらの 化学的性能の情報が必要となる。

滑材・添加材・裏込め材に 求められる共通の性能

①無公害

水質汚濁防止法や自治体条例等に定 められた、人の健康に係る被害を生ず るおそれがある物質(重金属、有機化 学物質など) や水の汚染状態を示す項 目(pH、BOD、COD、浮遊物質量など) の規制値を上回らないことや、セメント 系材料では六価クロムの溶出量が土壌 環境基準を上回らないこと等が求めら れる。

※水質汚濁防止法

公共用水域の水質汚濁の防止に関す る法律

※土壌環境基準

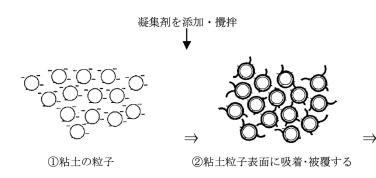
公害対策基本法に基づく土壌の汚染 に係る環境上の条件で、人の健康を 保護し、生活環境を保全する上で維 持することが望ましい基準

②軽量化

少量の配合で必要性能を発揮する材 料の使用により、現場での保存性・作 業性が改善すると共に、仮置ヤードが 省面積化する等のメリットがある。さら に作業所内や近隣への粉塵の飛散リス クも減少するので、作業環境も向上し、 近隣への影響も低減する。

また、設計された建設物を所定位置 に定置する建設業の宿命で、推進管等 の成果品として定置するものと、掘削 添加材等の仮設的材料とを現場まで運 搬する必要がある。使用材料の重量と 現場までのトラック等による運送量は比 例し、それはそのまま運搬費と運送手 段によるCO。排出量に比例するので、 せめて仮設的資材は軽量化を充分図り たい。滑材・添加材の軽量化はコスト の低減だけではなく、温室効果ガスの CO。排出量の削減に繋がることになる。

③作業性が良い


現場では、運搬された材料に希釈水 を加え、ミキサー等で混練し、その水 溶液をポンプ等で管内配管を使って一 定時間に定量送る作業が繰り返し行わ れる。そのため、上記の軽量化もその 一つの要素だが、水溶性が大きく、ミ キサー1バッチ単位での計量、作液が 容易で取り扱いやすい材料が望まれる。

④流動性、流体輸送性が高い

滑材・添加材・裏込め材の水溶液は 発進立坑部から推進管内の配管を利用 して掘削機および管内注入箇所に送ら れる。通常、推進工法での管内配管は 切離しと接続が管推進一本毎に行われ るため、その作業性からできる限り管 径が小さいものが望まれる。また、小口 径管推進の場合は測量ターゲットの視 準、大中口径管推進でも測量、作業員 や機材の移動、作業環境保全からもで きるだけ配管径を小さくしたい。そのた め、各水溶液はできるだけ粘性が小さ く、圧力損失が少ないもので、配管径 が小さくても所定の距離を圧送できる流 動性・運搬性の高い材料が望まれる。

滑材に求められる性能

滑材には上記の共通性能以外に、下 記の性能が望まれる。特に管列各箇所 の推進力を計画低推進力に保つことが

③被覆された粘土粒子が互 いに架橋(凝集)し水分を放出、 粘着性が除去される。

図-1 凝集脱水作用の機構図

長距離、急曲線施工を可能とし、管材 の強度、元押ジャッキや支圧壁の仕様、 推進工事全体のトラブルリスク低減やコ スト低減に大きく寄与する。

- ①余掘部(テールボイド)を維持確保し、 地盤とヒューム管の接触を防止する こと
- ②推進管周面抵抗力の低減率が高い こと
- ③地下水による水溶性が小さい、耐希 釈性に優れること
- ④地下水中の金属イオンから受ける影 響が小さいこと

掘削添加材に求められる性能

⑤地盤の間隙へ逸失しないこと

4.1 土圧式推進工法

が多く、カッタチャンバ内やスクリュコ ンベアで閉塞し、連続排土の場合は掘 削土砂の排泥管内の圧力損失が大きい ことがある。その場合、添加材(凝集 剤)の使用により粘性土を凝集させるこ ともある。図-1のように粘性土粒子を 凝集剤が包み込んで団粒化させ、内部 の水分を表面に離水させることにより表 面水が離型剤としてはたらき、金属面 に対する付着力が低減される。その結 果、カッタチャンバ内やスクリュコンベ アにおいて金属面および粘土粒子間の 粘着力が小さくなり、閉塞を防止、切 羽を保持する。

(2) 砂・砂礫層

①混合土の塑性流動性の向上

細粒分の含有の少ない砂礫層や砂層 の場合、掘削土砂は塑性流動性に乏し く透水性が高いため、そのままではカッ タトルクが上昇し、スクリュコンベア内 に掘削土砂が満たされず噴発し切羽圧 の保持が難しくなる。その場合に掘削 土砂に添加材を注入撹拌して塑性流動 性を与え、止水性を向上する。その結 果、カッタトルクの低減とカッタビットの 摩耗の減少、連続排土の場合は掘削土 砂の圧送性が向上する。

土圧式推進工法は、掘削土砂に加 泥材を注入し混練することにより塑性流 動性と保水性を有する混合土に変換し、 ジャッキ推進力により土圧に対抗する圧 力を発生させて切羽の安定を図りつつ 連続的に排土する工法で、加泥材に求 められる性能としては、土質別に下記 のようになる。

(1) 粘性土層

①混合土の粘着力、付着力の低減

一般的に粘性土層の土圧式推進工法 では、添加材を使用せず液性限界以上 の注水の計画が多いが、注水のみで泥 土化された粘性土は粘着性が高い場合

②混合土の止水性の向上

4.2 泥水式推進工法

泥水式推進工法は、前部が隔壁で密 閉された泥水式掘進機のカッタチャン バ内に満たされた泥水の圧力を、切羽 の土圧および地下水圧に見合う圧力に 保持することにより切羽を安定させる。 また、カッタヘッドの回転により切削し た土砂を泥水に混入して坑外へ流体輸 送しながら、推進管の敷設を行うもの である。流体輸送された排泥水は坑外 に設けた泥水処理装置により土砂と泥 水に分離し、泥水を再び切羽に送る循 環系統になっている。

その泥水には次のような性能が必要 となる。

- ①切羽面に難透水性の泥壁膜を形成し 泥水圧力を保持すること
- ②泥水中の細粒分や吸水性樹脂が切羽 と周面地盤の間隙に入り目詰まりす ること
- ③泥水材の塑性流動特性で切羽、地盤 の自立強度を高めること
- ④掘削土の沈降を防止し、搬送性、流 体輸送性が高いこと
- ⑤振動篩での掘削土との分離性に優れ ること

水は流動の状態によらず粘度が一定 のニュートン流体だが、泥水は流動の 速度が大きくなると粘度が低下する性質 (チキソトロピー性) を持つ非ニュート ン流体で、切羽部や排泥管内の泥水が 動いていない状態では粘性が上がり、 すぐには砂や礫が沈降せず、泥水が動 き始めると粘性が下がる性質を有する。

通常、添加材によく使われているベン トナイトはモンモリロナイトを主成分と したコロイド質の粘土であり、水分を含 むと膨潤する。ベントナイトはゲル化特 性を有して、表-1のように、粘性、イー ルド・バリュー、ゲル・ストレングスな どのレオロジー (塑性流動) 特性や泥 壁膜形成性、潤滑性等といった泥水の 最も重要な機能を与える。品質により その諸性質はかなり差があるが、掘削 用としては、イールド・バリューが大き く、少量で高い粘性を示し、泥壁膜形 成性の優れているものが良好なベント ナイトである。

裏込め材に求められる性能

掘進機での削孔部と管材の間に余掘 部 (テールボイド) が発生し、推進中 は滑材を充填するが、推進完了後は応 力開放が進み、周辺地盤に変状が生じ ないうちに速やかに裏込め材を充填す る必要がある。裏込め材には次のよう な性能が求められる。

- ①地盤以上の強度が早期に発現すること
- ②充填性が良いこと
- ③材料分離を起こさないこと
- ④注入後の体積減少が小さいこと
- ⑤水密性が高く、水溶性が小さいこと
- ⑥粘性があり、浸透性が小さく地上や 井戸への噴発がないこと

トラブル事例をふまえて 発注者・設計者への要望

推進工事におけるトラブル事例とそ の処置とその類のトラブル回避のため の発注者・設計者への要望を記す。

6.1 土質調査

【事例】

長距離の土圧式推進工事で粘性土か ら砂層に土質が変化し、スクリュコンベ ア部で閉塞し、推進不能となる。

【処置】

スクリュコンベアの改造、注入系統を 増設、加泥材質を変えて推進再開した。

表-1 標準的な泥水成分の役割

泥水成分の役割	ベントナイト	粘土	砂	CMC
①泥壁膜形成	0	0		0
②地山目詰効果		0	0	
③塑性流動性付与	0	0		0
④沈降特性	0	Δ	×	
⑤振動篩分離性	0			0

(要望)

土質調査ポイントを多くして欲しい。 特に地盤の変化箇所を設計書に特定し ていただくことが、機械・材料の最適 な選定と準備の円滑化を可能とし、トラ ブル回避に繋がる。

6.2 地下水調査

【事例】

工事途中で推進力の上昇が大きく なったため、立坑部で湧出している地 下水を調査すると塩分濃度が高かった。

【処置】

滑材に耐塩添加材を入れて、注入率 も増やし推進したが、一度上昇した推 進力は下がらず。

【要望】

ベントナイト溶液等の推進工法の注 入材は殆ど水から構成されているため に、地下水質が注入材に大きな影響を 与え、それがそのまま推進工法の品質 に影響する。地下水中の金属イオン濃 度(塩分)は事前に計測し、塩分が多 い場合は設計書に条件として記載して いただきたい。

6.3 材料の希釈水の水質

【事例】

現場で滑材のミキサー内をみると、 滑材水溶液の性状が違うようなので、 粘度計測すると、粘性が所定より小さ いことがわかった。現場担当者に確認 すると滑材の希釈水を支給されている が、水道本管が近くにないため、現場 部の井戸水を利用しているとのこと。

【処置】

水道水を運搬支給してもらう交渉をす

るが、設計変更も難しいとのことで、応じ てもらえず、希釈水はそのままで滑材の 配合を増量して粘性を上げて注入した。 【要望】

ベントナイトや吸水性樹脂、高分子 系材料等の薬剤は希釈水の水質の影響 を大きく受ける。施工条件で井戸水や 河川水(塩分を含む水や硬水)を希釈 水として利用する場合は事前に金属イ オン濃度試験をするか、注入材の水溶 液試験をして、異常がある場合は、水 道水等を運搬する設計条件にしていた だきたい。

6.4 バッキング防止措置 【事例】

推進工事完了後、推進力の推移デー タと滑材の注入量記録を確認すると、 推進開始から暫くは滑材を注入せず、 計画推進力より大きく上昇した記録に なっていた。担当者に確認すると、土 被りが大きく、地下水圧でバッキング(元 押ジャッキ引き戻し時に切羽前面部の 地下水圧で推進管が後退する現象)が 発生している間は滑材の注入をしてい なかったということだった。

【要望】

土質試験で間隙水圧等がわかり、設 計時点でバッキングが発生する可能性 がある時は、管材や発進立坑にバッキ ング防止措置を計画していただきたい。

バッキングするから滑材を注入しない という発想はテールボイド保持ができ ず、推進工事のリスクを高めることを認 識する必要がある。

おわりに

現場員の経験に基づいた推進資材 の選定基準は貴重で、そこに少しの化 学的な知識を加えると推進工事の安全 性、経済性、品質の確保につながる。

推進工事の品質には様々あるが、そ の要点を挙げる。

- ・工場出荷時の管材の品質のまま推進 完了すること
- ・管材を計画された位置に精度良く設

置すること

・管路周辺部の地盤の緩みを起こさないこと

今回取り上げた、滑材、添加材、裏 込め材はその品質確保のために必要な 資材となる。

まず発注者・設計者から正確な土質 や水質のデータをいただくことが前提 で、その条件に適合する推進資材の選 択とその適切な使用が推進工法の品質 を左右する。 また将来とも、推進工法用資材の性能の向上が、発注者の推進工法への信頼度を上げることにつながるので、今後もその必要性能が向上した新製品を期待したい。

【参考文献】

シールド工法の調査・設計から施工まで (組地盤工学会

月刊推進技術 2009年4月号 vol.23